Skip to contents

The subset_T2D.obj dataset contains 16S rRNA data for 79 patients with type 2 diabetes (T2D) over multiple visits, gathered as part of the Integrative Human Microbiome Project (iHMP) or HMP2 study. The dataset includes a mStat object with 12,062 taxa and 2,208 samples.

Usage

data(subset_T2D.obj)

Format

A MicrobiomeStat Data Object with the following components:

feature.tab

A matrix of microbial abundances

meta.dat

A data frame with 575 observations and 14 variables:

file_id

Character. Unique identifier for each file

md5

Character. MD5 hash of the file

size

Character. File size in bytes

urls

Character. URL for file download

sample_id

Character. Unique identifier for each sample

file_name

Character. Name of the file

subject_id

Character. Unique identifier for each subject

sample_body_site

Character. Body site of sample collection (e.g., "feces")

visit_number

Character. Visit number as a string

subject_gender

Character. Gender of the subject

subject_race

Character. Race/ethnicity of the subject

study_full_name

Character. Full name of the study (e.g., "prediabetes")

project_name

Character. Name of the project

visit_number_num

Numeric. Visit number as a numeric value

tree

Phylogenetic tree of the taxa

tax.tab

Taxonomic classification of the taxa

Source

Data source: Integrative Human Microbiome Project (iHMP) https://www.hmpdacc.org/ihmp/

References

Zhou, W., Sailani, M.R., Contrepois, K. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019). https://doi.org/10.1038/s41586-019-1236-x

Examples

data(subset_T2D.obj)
str(subset_T2D.obj$meta.dat)
#> 'data.frame':	575 obs. of  14 variables:
#>  $ file_id         : chr  "6cca313bce90a4392c3d5cf23fdb43db" "6cca313bce90a4392c3d5cf23fda16c7" "6cca313bce90a4392c3d5cf23fd946a5" "6cca313bce90a4392c3d5cf23fdb6783" ...
#>  $ md5             : chr  "52ae217fbb3b5888906574e7c0eda10a" "f7f85c444703ec4259d5358e2662fe72" "4b9bf6bf9cc0e62372ecb73ebd303cae" "30251158c0b00b8d15f0027786cad84d" ...
#>  $ size            : chr  " 96000" " 86000" " 83000" " 98000" ...
#>  $ urls            : chr  "fasp://aspera.ihmpdcc.org/t2d/genome/microbiome/16s/analysis/hmqcp/HMP2_J00825_1_ST_T0_B0_0120_ZN9YTFN-01_AA31J.biom" "fasp://aspera.ihmpdcc.org/t2d/genome/microbiome/16s/analysis/hmqcp/HMP2_J00826_1_ST_T0_B0_0120_ZN9YTFN-1011_AA31J.biom" "fasp://aspera.ihmpdcc.org/t2d/genome/microbiome/16s/analysis/hmqcp/HMP2_J00827_1_ST_T0_B0_0120_ZN9YTFN-1012_AA31J.biom" "fasp://aspera.ihmpdcc.org/t2d/genome/microbiome/16s/analysis/hmqcp/HMP2_J00828_1_ST_T0_B0_0120_ZN9YTFN-1013_AA31J.biom" ...
#>  $ sample_id       : chr  "932d8fbc70ae8f856028b3f67c4ef6ac" "932d8fbc70ae8f856028b3f67c4f0716" "932d8fbc70ae8f856028b3f67c4f21b0" "932d8fbc70ae8f856028b3f67c4f35bd" ...
#>  $ file_name       : chr  "HMP2_J00825_1_ST_T0_B0_0120_ZN9YTFN-01_AA31J" "HMP2_J00826_1_ST_T0_B0_0120_ZN9YTFN-1011_AA31J" "HMP2_J00827_1_ST_T0_B0_0120_ZN9YTFN-1012_AA31J" "HMP2_J00828_1_ST_T0_B0_0120_ZN9YTFN-1013_AA31J" ...
#>  $ subject_id      : chr  "88af6472fb03642dd5eaf8cddc36aacc" "88af6472fb03642dd5eaf8cddc36aacc" "88af6472fb03642dd5eaf8cddc36aacc" "88af6472fb03642dd5eaf8cddc36aacc" ...
#>  $ sample_body_site: chr  "feces" "feces" "feces" "feces" ...
#>  $ visit_number    : chr  "   1" "   2" "   3" "   4" ...
#>  $ subject_gender  : chr  "female" "female" "female" "female" ...
#>  $ subject_race    : chr  "hispanic_or_latino" "hispanic_or_latino" "hispanic_or_latino" "hispanic_or_latino" ...
#>  $ study_full_name : chr  "prediabetes" "prediabetes" "prediabetes" "prediabetes" ...
#>  $ project_name    : chr  "Integrative Human Microbiome Project" "Integrative Human Microbiome Project" "Integrative Human Microbiome Project" "Integrative Human Microbiome Project" ...
#>  $ visit_number_num: num  1 2 3 4 5 6 1 2 4 6 ...