
Generate Alpha Diversity Spaghetti Plot (Longitudinal)
Source:R/generate_alpha_spaghettiplot_long.R
generate_alpha_spaghettiplot_long.RdGenerates spaghetti plots showing individual subject trajectories and group mean trajectories for alpha diversity over time.
Usage
generate_alpha_spaghettiplot_long(
data.obj,
alpha.obj = NULL,
alpha.name = c("shannon", "simpson", "observed_species", "chao1", "ace", "pielou"),
depth = NULL,
subject.var,
time.var,
t0.level,
ts.levels,
group.var = NULL,
strata.var = NULL,
adj.vars = NULL,
base.size = 16,
palette = NULL,
theme.choice = "bw",
custom.theme = NULL,
pdf = TRUE,
file.ann = NULL,
pdf.wid = 11,
pdf.hei = 8.5,
...
)Arguments
- data.obj
A MicrobiomeStat data object, which is a list containing at minimum the following components:
feature.tab: A matrix of feature abundances (taxa/genes as rows, samples as columns)meta.dat: A data frame of sample metadata (samples as rows)
Optional components include:
feature.ann: A matrix/data frame of feature annotations (e.g., taxonomy)tree: A phylogenetic tree object (class "phylo")feature.agg.list: Pre-aggregated feature tables by taxonomy
Data objects can be created using converters like
mStat_convert_phyloseq_to_data_objor importers likemStat_import_qiime2_as_data_obj.- alpha.obj
A list containing pre-calculated alpha diversity indices. If NULL and alpha diversity is needed, it will be calculated automatically. Names should match the alpha.name parameter (e.g., "shannon", "simpson"). See
mStat_calculate_alpha_diversity.- alpha.name
Character vector specifying which alpha diversity indices to analyze. Options include:
"shannon": Shannon diversity index
"simpson": Simpson diversity index
"observed_species": Observed species richness
"chao1": Chao1 richness estimator
"ace": ACE richness estimator
"pielou": Pielou's evenness
- depth
Numeric value or NULL. Rarefaction depth for diversity calculations. If NULL, uses minimum sample depth or no rarefaction.
- subject.var
Character string specifying the column name in meta.dat that uniquely identifies each subject or sample unit. Required for longitudinal and paired designs to track repeated measurements.
- time.var
Character string specifying the column name in meta.dat containing the time variable. Required for longitudinal and paired analyses. Should be a factor or character with meaningful time point labels.
- t0.level
Character or numeric value specifying the baseline time point for longitudinal or paired analyses. Should match a value in the time.var column.
- ts.levels
Character vector specifying the follow-up time points for longitudinal or paired analyses. Should match values in the time.var column.
- group.var
Character string specifying the column name in meta.dat containing the grouping variable (e.g., treatment, condition, phenotype). Used for between-group comparisons.
- strata.var
Character string specifying the column name in meta.dat for stratification. When provided, analyses and visualizations will be performed separately within each stratum (e.g., by site, batch, or sex).
- adj.vars
Character vector specifying column names in meta.dat to be used as covariates for adjustment in statistical models. These variables will be included as fixed effects.
- base.size
Numeric value specifying the base font size for plot text elements. Default is typically 16.
- palette
Character vector of colors or a named palette for the plot. If NULL, uses default MicrobiomeStat color scheme. Can be:
A vector of color codes (e.g., c("#E41A1C", "#377EB8"))
A palette name recognized by the plotting function
- theme.choice
Character string specifying the ggplot2 theme to use. Options include:
"bw": Black and white theme (theme_bw)
"classic": Classic theme (theme_classic)
"minimal": Minimal theme (theme_minimal)
"prism": GraphPad Prism-like theme
"nature": Nature journal style
"light": Light theme (theme_light)
Can also use a custom ggplot2 theme object via custom.theme.
- custom.theme
A custom ggplot2 theme object to override theme.choice. Should be created using ggplot2::theme() or a complete theme function.
Logical. If TRUE, saves the plot(s) to PDF file(s) in the current working directory. Default is TRUE.
- file.ann
Character string for additional annotation to append to output filenames. Useful for distinguishing multiple outputs.
- pdf.wid
Numeric value specifying the width of PDF output in inches. Default is typically 11.
- pdf.hei
Numeric value specifying the height of PDF output in inches. Default is typically 8.5.
- ...
Additional arguments passed to ggplot().
Examples
if (FALSE) { # \dontrun{
data("subset_T2D.obj")
T2D.alpha.obj <- mStat_calculate_alpha_diversity(subset_T2D.obj$feature.tab,"shannon")
generate_alpha_spaghettiplot_long(
data.obj = subset_T2D.obj,
alpha.obj = T2D.alpha.obj,
alpha.name = c("shannon"),
subject.var = "subject_id",
time.var = "visit_number",
t0.level = sort(unique(subset_T2D.obj$meta.dat$visit_number))[1],
ts.levels = sort(unique(subset_T2D.obj$meta.dat$visit_number))[-1],
group.var = "subject_gender",
strata.var = "subject_race",
adj.vars = "sample_body_site",
theme.choice = "bw",
palette = "lancet",
pdf = TRUE,
file.ann = NULL,
pdf.wid = 11,
pdf.hei = 8.5
)
data("ecam.obj")
generate_alpha_spaghettiplot_long(
data.obj = ecam.obj,
alpha.obj = NULL,
alpha.name = c("shannon","simpson", "observed_species"),
subject.var = "subject.id",
time.var = "month_num",
t0.level = NULL,
ts.levels = NULL,
group.var = NULL,
strata.var = NULL,
adj.vars = NULL,
theme.choice = "bw",
palette = "lancet",
pdf = TRUE,
file.ann = NULL,
pdf.wid = 11,
pdf.hei = 8.5
)
generate_alpha_spaghettiplot_long(
data.obj = ecam.obj,
alpha.obj = NULL,
alpha.name = c("shannon","simpson", "observed_species"),
subject.var = "subject.id",
time.var = "month_num",
t0.level = NULL,
ts.levels = NULL,
group.var = "delivery",
strata.var = NULL,
adj.vars = NULL,
theme.choice = "bw",
palette = "lancet",
pdf = TRUE,
file.ann = NULL,
pdf.wid = 11,
pdf.hei = 8.5
)
generate_alpha_spaghettiplot_long(
data.obj = ecam.obj,
alpha.obj = NULL,
alpha.name = c("shannon","simpson", "observed_species"),
subject.var = "subject.id",
time.var = "month_num",
t0.level = NULL,
ts.levels = NULL,
group.var = "delivery",
strata.var = "diet",
adj.vars = NULL,
theme.choice = "bw",
palette = "lancet",
pdf = TRUE,
file.ann = NULL,
pdf.wid = 11,
pdf.hei = 8.5
)
generate_alpha_spaghettiplot_long(
data.obj = ecam.obj,
alpha.obj = NULL,
alpha.name = c("shannon","simpson", "observed_species"),
subject.var = "subject.id",
time.var = "month_num",
t0.level = NULL,
ts.levels = NULL,
group.var = "delivery",
strata.var = "diet",
adj.vars = "antiexposedall",
theme.choice = "bw",
palette = "lancet",
pdf = TRUE,
file.ann = NULL,
pdf.wid = 11,
pdf.hei = 8.5
)
} # }